Novel Imaging Approach Reveals Important Details About Rare Eye Disease Choroideremia

New findings could improve the development and efficacy of therapies.

RPE cells (see circled examples) in a male participant with choroideremia, showing that enlarged RPE cells can be detected using Tam’s multimodal imaging approach. Johnny Tam, Ph.D., NEI

Johnny Tam, Ph.D., head of the NEI Clinical and Translational Imaging Unit combined adaptive optics with indocyanine green dye to view live cells in the retina, including light-sensing photoreceptors, retinal pigment epithelium (RPE), and choroidal blood vessels. His team was able to see in detail the extent to which choroideremia disrupts these tissues, providing information that could help design effective treatments for this and other diseases. The retina’s RPE is a layer of pigmented cells essential to the nourishment and survival of photoreceptors.

Choroideremia affects men more than women because the gene responsible for the disease is located on the X chromosome. Since men have only one copy of the X chromosome, a mutation in the gene causes males to develop more severe symptoms, while females – who have two copies of the X chromosome – usually have milder symptoms, having one working copy of the gene on the other X chromosome.

“One major finding of our study was that the RPE cells are dramatically enlarged in males and females with choroideremia,” said Tam. “We were surprised to see many cells enlarged by as much as five-fold.”

Female participants in the study showed a mix of enlarged and healthier-looking RPE cells. This may explain why women with choroideremia have milder symptoms, according to Tam. Photoreceptor and blood vessel layers were less affected in both male and female study participants, suggesting that RPE disruption plays an important role in choroideremia.

Tam’s adaptive optics is not part of routine diagnostic testing in eye clinics. Surprisingly, his team found that enlarged RPE cells can be detected even when using only a commercially available scanning laser ophthalmoscope along with indocyanine green dye.

“It’s not obvious at first, but using an existing tool in the clinic, we can monitor and track the cellular status of the RPE layer. This could prove valuable in identifying which patients would benefit the most from therapeutic interventions,” said Tam.

This press release describes a basic research finding. Basic research increases our understanding of human behavior and biology, which is foundational to advancing new and better ways to prevent, diagnose, and treat disease. Science is an unpredictable and incremental process— each research advance builds on past discoveries, often in unexpected ways. Most clinical advances would not be possible without the knowledge of fundamental basic research. To learn more about basic research, visit https://www.nih.gov/news-events/basic-research-digital-media-kit.    

NEI leads the federal government’s efforts to eliminate vision loss and improve quality of life through vision research…driving innovation, fostering collaboration, expanding the vision workforce, and educating the public and key stakeholders. NEI supports basic and clinical science programs to develop sight-saving treatments and to broaden opportunities for people with vision impairment. For more information, visit  https://www.nei.nih.gov.   

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIH…Turning Discovery Into Health®

References

Nancy Aguilera, Tao Liu, Andrew J. Bower, Joanne Li, Sarah Abouassali, Rongwen Lu, John Giannini, Maximilian Pfau, Chelsea Bender, Margery G. Smelkinson, Amelia Naik, Bin Guan, Owen Schwartz, Andrei Volkov, Alfredo Dubra, Zhuolin Liu, Daniel X. Hammer, Dragan Maric, Robert Fariss, Robert B. Hufnagel, Brett G. Jeffrey, Brian P. Brooks, Wadih M. Zein, Laryssa A. Huryn, Johnny Tam*. Widespread subclinical cellular changes revealed across a neural-epithelial vascular complex in choroideremia using adaptive optics. DOI:10.1038/s42003-022-03842-7(link is external)

 Via Novel imaging approach reveals important details about rare eye disease choroideremia | National Institutes of Health (NIH)

 

Information courtesy of the National Institutes of Health